Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Environments furnish multiple information sources for making predictions about future events. Here we use behavioural modelling and functional magnetic resonance imaging to describe how humans select predictors that might be most relevant. First, during early encounters with potential predictors, participants' selections were explorative and directed towards subjectively uncertain predictors (positive uncertainty effect). This was particularly the case when many future opportunities remained to exploit knowledge gained. Then, preferences for accurate predictors increased over time, while uncertain predictors were avoided (negative uncertainty effect). The behavioural transition from positive to negative uncertainty-driven selections was accompanied by changes in the representations of belief uncertainty in ventromedial prefrontal cortex (vmPFC). The polarity of uncertainty representations (positive or negative encoding of uncertainty) changed between exploration and exploitation periods. Moreover, the two periods were separated by a third transitional period in which beliefs about predictors' accuracy predominated. The vmPFC signals a multiplicity of decision variables, the strength and polarity of which vary with behavioural context.

Original publication




Journal article


Nat Hum Behav

Publication Date





83 - 98


Bayes Theorem, Brain, Choice Behavior, Exploratory Behavior, Female, Functional Neuroimaging, Humans, Judgment, Magnetic Resonance Imaging, Male, Prefrontal Cortex, Uncertainty, Young Adult