Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Flexible navigation relies on a cognitive map of space, thought to be implemented by hippocampal place cells: neurons that exhibit location-specific firing. In connected environments, optimal navigation requires keeping track of one's location and of the available connections between subspaces. We examined whether the dorsal CA1 place cells of rats encode environmental connectivity in four geometrically identical boxes arranged in a square. Rats moved between boxes by pushing saloon-type doors that could be locked in one or both directions. Although rats demonstrated knowledge of environmental connectivity, their place cells did not respond to connectivity changes, nor did they represent doorways differently from other locations. Place cells coded location in a global reference frame, with a different map for each box and minimal repetitive fields despite the repetitive geometry. These results suggest that CA1 place cells provide a spatial map that does not explicitly include connectivity.

Original publication




Journal article


Curr Biol

Publication Date





1221 - 1233.e9


detour, four-room maze, hippocampus, navigation, place cells, place field repetition, rat, spatial connectivity, topology, transitions