Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We explored the hypothesis that learning a Pavlovian negative patterning task would be facilitated when training with differential, as opposed to non-differential, reinforcing outcomes. Two groups of rats received pairings of one visual and one auditory stimulus with food reward when these stimuli were presented on separate training trials, but without reward when both stimuli were presented on simultaneous stimulus compound trials (V+, A+, AV-; similar to an XOR problem). For Group Differential, each stimulus was separately paired with distinctively tasting food rewards, whereas for Group Non-Differential each stimulus was randomly paired with both food reward types across different stimulus element trials. We observed that rats learned the negative patterning task more rapidly and effectively when trained with differential outcomes. These data support a multi-layered connectionist model introduced by Delamater (2012) in which a multi-modal processing structure plays the role of a "sensory integration" area like that hypothesized for the retrosplenial cortex by Dave Bucci and his colleagues (e.g., Todd, Fournier, & Bucci, 2019). We discuss how such a region may develop different "negative occasion setting" and "configural inhibition" mechanisms in solving negative patterning and related tasks.

Original publication

DOI

10.1016/j.nlm.2021.107527

Type

Journal article

Journal

Neurobiol Learn Mem

Publication Date

11/2021

Volume

185

Keywords

Connectionist modeling, Differential outcome effect, Negative patterning, Pavlovian learning, Retrosplenial cortex, Acoustic Stimulation, Animals, Conditioning, Operant, Gyrus Cinguli, Male, Nerve Net, Photic Stimulation, Rats, Rats, Long-Evans, Reward