Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Studies of neural population dynamics of cell activity from monkey motor areas during reaching show that it mostly represents the generation and timing of motor behavior. We compared neural dynamics in dorsal premotor cortex (PMd) during the performance of a visuomotor task executed individually or cooperatively and during an observation task. In the visuomotor conditions, monkeys applied isometric forces on a joystick to guide a visual cursor in different directions, either alone or jointly with a conspecific. In the observation condition, they observed the cursor's motion guided by the partner. We found that in PMd neural dynamics were widely shared across action execution and observation, with cursor motion directions more accurately discriminated than task types. This suggests that PMd encodes spatial aspects irrespective of specific behavioral demands. Furthermore, our results suggest that largest components of premotor population dynamics, which have previously been suggested to reflect a transformation from planning to movement execution, may rather reflect higher cognitive-motor processes, such as the covert representation of actions and goals shared across tasks that require movement and those that do not.

Original publication

DOI

10.1016/j.pneurobio.2021.102214

Type

Journal article

Journal

Prog Neurobiol

Publication Date

03/2022

Volume

210

Keywords

Action execution, Action observation, Dorsal premotor cortex, Joint action, Population dynamics, Animals, Humans, Macaca mulatta, Motor Cortex, Movement, Population Dynamics, Psychomotor Performance