Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

When looking at two identical objects moving toward each other on a two-dimensional visual display, two different events can be perceived: the objects can either be seen to bounce off each other, or else to stream through one another. Previous research has shown that the large bias normally seen toward the streaming percept can be modulated by the presentation of an auditory event at the moment of coincidence. However, previous behavioral research on this crossmodal effect has always relied on subjective report. In the present experiment, we used a novel experimental design to provide a more objective/implicit measure of the effect of an auditory cue on visual motion perception. In our study, two disks moved toward each other, with the point of coincidence hidden behind an occluder. When emerging from behind the occluder, the disks (one red, the other blue) could either follow the same trajectory (streaming) or else move in the opposite direction (bouncing). Participants made speeded discrimination responses regarding the side from which one of the disks emerged from behind the occluder. Participants responded more rapidly on streaming trials when no sound was presented and on bouncing trials when the sound was presented at the moment of coincidence. These results provide the first empirical demonstration of the auditory modulation of an ambiguous visual motion display using an implicit/objective behavioral measure of perception.

Original publication




Journal article


Exp Brain Res

Publication Date





537 - 541


Acoustic Stimulation, Adolescent, Adult, Analysis of Variance, Female, Humans, Male, Motion Perception, Photic Stimulation