Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We modeled discrimination thresholds for object colors under different lighting environments [J. Opt. Soc. Am. 35, B244 (2018)]. First, we built models based on chromatic statistics, testing 60 models in total. Second, we trained convolutional neural networks (CNNs), using 160,280 images labeled by either the ground-truth or human responses. No single chromatic statistics model was sufficient to describe human discrimination thresholds across conditions, while human-response-trained CNNs nearly perfectly predicted human thresholds. Guided by region-of-interest analysis of the network, we modified the chromatic statistics models to use only the lower regions of the objects, which substantially improved performance.

Original publication




Journal article


J Opt Soc Am A Opt Image Sci Vis

Publication Date





A149 - A159


Humans, Color Perception, Lighting, Neural Networks, Computer, Models, Statistical