Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Speech perception can use not only auditory signals, but also visual information from seeing the speaker's mouth. The relative timing and relative location of auditory and visual inputs are both known to influence crossmodal integration psychologically, but previous imaging studies of audiovisual speech focused primarily on just temporal aspects. Here we used Positron Emission Tomography (PET) during audiovisual speech processing to study how temporal and spatial factors might jointly affect brain activations. In agreement with previous work, synchronous versus asynchronous audiovisual speech yielded increased activity in multisensory association areas (e.g., superior temporal sulcus [STS]), plus in some unimodal visual areas. Our orthogonal manipulation of relative stimulus position (auditory and visual stimuli presented at same location vs. opposite sides) and stimulus synchrony showed that (i) ventral occipital areas and superior temporal sulcus were unaffected by relative location; (ii) lateral and dorsal occipital areas were selectively activated for synchronous bimodal stimulation at the same external location; (iii) right inferior parietal lobule was activated for synchronous auditory and visual stimuli at different locations, that is, in the condition classically associated with the 'ventriloquism effect' (shift of perceived auditory position toward the visual location). Thus, different brain regions are involved in different aspects of audiovisual integration. While ventral areas appear more affected by audiovisual synchrony (which can influence speech identification), more dorsal areas appear to be associated with spatial multisensory interactions.

Original publication




Journal article



Publication Date





725 - 732


Adult, Afferent Pathways, Attention, Brain Mapping, Cerebral Cortex, Dominance, Cerebral, Humans, Image Processing, Computer-Assisted, Lipreading, Magnetic Resonance Imaging, Male, Orientation, Regional Blood Flow, Semantics, Sound Localization, Time Perception, Tomography, Emission-Computed, Visual Perception