PREDICTIVE LEARNING ENABLES NEURAL NETWORKS TO LEARN COMPLEX WORKING MEMORY TASKS
van der Plas TL., Vogels TP., Manohar SG.
Brains are thought to engage in predictive learning - learning to predict upcoming stimuli - to construct an internal model of their environment. This is especially notable for spatial navigation, as first described by Tolman’s latent learning tasks. However, predictive learning has also been observed in sensory cortex, in settings unrelated to spatial navigation. Apart from normative frameworks such as active inference or efficient coding, what could be the utility of learning to predict the patterns of occurrence of correlated stimuli? Here we show that prediction, and thereby the construction of an internal model of sequential stimuli, can bootstrap the learning process of a working memory task in a recurrent neural network. We implemented predictive learning alongside working memory match-tasks, and networks emerged to solve the prediction task first by encoding information across time to predict upcoming stimuli, and then eavesdropped on this solution to solve the matching task. Eavesdropping was most beneficial when neural resources were limited. Hence, predictive learning acts as a general neural mechanism to learn to store sensory information that can later be essential for working memory tasks.