Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Interest in the psychology of misinformation has exploded in recent years. Despite ample research, to date there is no validated framework to measure misinformation susceptibility. Therefore, we introduce Verification done, a nuanced interpretation schema and assessment tool that simultaneously considers Veracity discernment, and its distinct, measurable abilities (real/fake news detection), and biases (distrust/naïvité-negative/positive judgment bias). We then conduct three studies with seven independent samples (Ntotal = 8504) to show how to develop, validate, and apply the Misinformation Susceptibility Test (MIST). In Study 1 (N = 409) we use a neural network language model to generate items, and use three psychometric methods-factor analysis, item response theory, and exploratory graph analysis-to create the MIST-20 (20 items; completion time

Original publication




Journal article


Behav Res Methods

Publication Date



Automated item generation, Fake news, Misinformation susceptibility, Neural networks, Psychometrics