Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Objects that are congruent with a scene are recognised more efficiently than objects that are incongruent. Further, semantic integration of incongruent objects elicits a stronger N300/N400 EEG component. Yet, the time course and mechanisms of how contextual information supports access to semantic object information is unclear. We used computational modelling and EEG to test how context influences semantic object processing. Using representational similarity analysis, we established that EEG patterns dissociated between objects in congruent or incongruent scenes from around 300 ms. By modelling the semantic processing of objects using independently normed properties, we confirm that the onset of semantic processing of both congruent and incongruent objects is similar (∼150 ms). Critically, after ∼275 ms, we discover a difference in the duration of semantic integration, lasting longer for incongruent compared to congruent objects. These results constrain our understanding of how contextual information supports access to semantic object information.

Original publication




Journal article


Language, Cognition and Neuroscience

Publication Date