Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Damage to the frontal lobe can cause severe decision-making impairments. A mechanism that may underlie this is that neurons in the frontal cortex encode many variables that contribute to the valuation of a choice, such as its costs, benefits and probability of success. However, optimal decision-making requires that one considers these variables, not only when faced with the choice, but also when evaluating the outcome of the choice, in order to adapt future behaviour appropriately. To examine the role of the frontal cortex in encoding the value of different choice outcomes, we simultaneously recorded the activity of multiple single neurons in the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) while subjects evaluated the outcome of choices involving manipulations of probability, payoff and cost. Frontal neurons encoded many of the parameters that enabled the calculation of the value of these variables, including the onset and offset of reward and the amount of work performed, and often encoded the value of outcomes across multiple decision variables. In addition, many neurons encoded both the predicted outcome during the choice phase of the task as well as the experienced outcome in the outcome phase of the task. These patterns of selectivity were more prevalent in ACC relative to OFC and LPFC. These results support a role for the frontal cortex, principally ACC, in selecting between choice alternatives and evaluating the outcome of that selection thereby ensuring that choices are optimal and adaptive.

Original publication

DOI

10.1111/j.1460-9568.2009.06743.x

Type

Journal article

Journal

Eur J Neurosci

Publication Date

05/2009

Volume

29

Pages

2061 - 2073

Keywords

Animals, Choice Behavior, Electrodes, Implanted, Frontal Lobe, Macaca mulatta, Microelectrodes, Neurons, Reward