Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractSelective attention prioritises relevant information amongst competing sensory input. Time-resolved electrophysiological studies have shown stronger representation of attended compared to unattended stimuli, which has been interpreted as an effect of attention on information coding. However, because attention is often manipulated by making only the attended stimulus a target to be remembered and/or responded to, many reported attention effects have been confounded with target-related processes such as visual short-term memory or decision-making. In addition, attention effects could be influenced by temporal expectation about when something is likely to happen. The aim of this study was to investigate the dynamic effect of attention on visual processing using multivariate pattern analysis of electroencephalography (EEG) data, while (1) controlling for target-related confounds, and (2) directly investigating the influence of temporal expectation. Participants viewed rapid sequences of overlaid oriented grating pairs while detecting a “target” grating of a particular orientation. We manipulated attention, one grating was attended and the other ignored (cued by colour), and temporal expectation, with stimulus onset timing either predictable or not. We controlled for target-related processing confounds by only analysing non-target trials. Both attended and ignored gratings were initially coded equally in the pattern of responses across EEG sensors. An effect of attention, with preferential coding of the attended stimulus, emerged approximately 230 ms after stimulus onset. This attention effect occurred even when controlling for target-related processing confounds, and regardless of stimulus onset expectation. These results provide insight into the effect of feature-based attention on the dynamic processing of competing visual information.

Original publication

DOI

10.1038/s41598-022-10687-x

Type

Journal article

Journal

Scientific Reports

Publisher

Springer Science and Business Media LLC

Publication Date

28/04/2022

Volume

12