Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Many researchers have taken the Colavita effect to represent a paradigm case of visual dominance. Broadly defined, the effect occurs when people fail to respond to an auditory target if they also have to respond to a visual target presented at the same time. Previous studies have revealed the remarkable resilience of this effect to various manipulations. In fact, a reversal of the Colavita visual dominance effect (i.e., auditory dominance) has never been reported. Here, we present a series of experiments designed to investigate whether it is possible to reverse the Colavita effect when the target stimuli consist of repetitions embedded in simultaneously presented auditory and visual streams of stimuli. In line with previous findings, the Colavita effect was still observed for an immediate repetition task, but when an n-1 repetition detection task was used, a reversal of visual dominance was demonstrated. These results suggest that masking from intervening stimuli between n-1 repetition targets was responsible for the elimination and reversal of the Colavita visual dominance effect. They further suggest that varying the presence of a mask (pattern, conceptual, or absent) in the repetition detection task gives rise to different patterns of sensory dominance (i.e., visual dominance, an elimination of the Colavita effect, or even auditory dominance).

Original publication




Journal article


Exp Brain Res

Publication Date





607 - 618


Acoustic Stimulation, Adolescent, Adult, Auditory Perception, Dominance, Cerebral, Female, Humans, Male, Middle Aged, Photic Stimulation, Vision, Ocular, Visual Perception, Young Adult