Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Most animals rely on visual information for a variety of everyday tasks. The information available to a visual system depends in part on its spatial resolving power and contrast sensitivity. Because of their competing demands for physical space within an eye, these traits cannot simultaneously be improved without increasing overall eye size. The contrast sensitivity function is an integrated measure of visual performance that measures both resolution and contrast sensitivity. Its measurement helps us identify how different species have made a trade-off between contrast sensitivity and spatial resolution. It further allows us to identify the evolutionary drivers of sensory processing and visually mediated behaviour. Here, we measured the contrast sensitivity function of the fiddler crab Gelasimus dampieri using its optokinetic responses to wide-field moving sinusoidal intensity gratings of different orientations, spatial frequencies, contrasts and speeds. We further tested whether the behavioural state of the crabs (i.e. whether crabs are actively walking or not) affects their optokinetic gain and contrast sensitivity. Our results from a group of five crabs suggest a minimum perceived contrast of 6% and a horizontal and vertical visual acuity of 0.4 cyc deg-1 and 0.28 cyc deg-1, respectively, in the crabs' region of maximum optomotor sensitivity. Optokinetic gain increased in moving crabs compared with restrained crabs, adding another example of the importance of naturalistic approaches when studying the performance of animals.

Original publication




Journal article


J Exp Biol

Publication Date





Behavioural state, Compound eye, Contrast sensitivity, Spatial resolution, Vision, Animals, Contrast Sensitivity, Brachyura, Visual Acuity