Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Biological visual systems provide excellent examples of robust target detection and tracking mechanisms capable of performing in a wide range of environments. Consequently, they have been sources of inspiration for many artificial vision algorithms. However, testing the robustness of target detection and tracking algorithms is a challenging task due to the diversity of environments for applications of these algorithms. Correlation between image quality metrics and model performance is one way to deal with this problem. Previously we developed a target detection model inspired by physiology of insects and implemented it in a closed loop target tracking algorithm. In the current paper we vary the kinetics of a salience-enhancing element of our algorithm and test its effect on the robustness of our model against different natural images to find the relationship between model performance and background clutter.

Original publication




Conference paper

Publication Date



822 - 826