Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although methylphenidate (MPH) has been shown to significantly improve selective attention in children with attention-deficit/hyperactivity disorder (ADHD), the neural mechanism of this effect remains unclear. We investigated the effects of first-dose MPH on the neural signatures of visual selective attention in children with ADHD. We measured the impact of first-dose MPH on electrophysiological indexes from eighteen children with ADHD (8.9-15.2 years; 15 boys) while they performed a visual search task. MPH was administered in a double-blind placebo-controlled crossover design. MPH led to decreases in behavioral error rates and reaction times. For the electrophysiological indexes, MPH significantly increased the target-elicited N2pc amplitude and posterior P3 amplitude during the selective attention process. The trial-based correlation analysis revealed that the enhanced N2pc (more negative) and P3 (more positive) promoted the behavioral response speed for children with ADHD. The lower individual P3 amplitude was associated with higher severity of inattention symptoms. The severer inattention symptoms were related to weaker MPH effect on N2pc amplitude. These findings suggest that N2pc and P3 are closely related to the mechanism of MPH in the ADHD treatment.

Original publication

DOI

10.1016/j.biopsycho.2022.108481

Type

Journal article

Journal

Biol Psychol

Publication Date

02/2023

Volume

177

Keywords

ADHD, Children, Methylphenidate, N2pc, P3, Selective attention, Child, Humans, Male, Attention, Attention Deficit Disorder with Hyperactivity, Central Nervous System Stimulants, Cognition, Double-Blind Method, Methylphenidate, Treatment Outcome, Cross-Over Studies