Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The conventional assumption in human cognitive electrophysiology using EEG and MEG is that the presentation of a particular event such as visual or auditory stimuli evokes a "turning on" of additional brain activity that adds to the ongoing background activity. Averaging multiple event-locked trials is thought to result in the cancellation of the seemingly random phased ongoing activity while leaving the evoked response. However, recent work strongly challenges this conventional view and demonstrates that the ongoing activity is not averaged out due to specific non-sinusoidal properties. As a consquence, systematic modulations in ongoing activity can produce slow cortical evoked responses reflecting cognitive processing. In this review we introduce the concept of "rhythmic pulsing" to account for this specific non-sinusoidal property. We will explain how rhythmic pulsing can create slow evoked responses from a physiological perspective. We will also discuss how the notion of rhythmic pulsing provides a unifying framework linking ongoing oscillations, evoked responses and the brain's capacity to process incoming information.

Original publication

DOI

10.3389/fnhum.2010.00177

Type

Journal article

Journal

Front Hum Neurosci

Publication Date

2010

Volume

4

Keywords

alpha oscillations, amplitude asymmetry, evoked responses, inhibition