Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hypocapnia induced by hyperventilation (HV) has powerful effects on neuronal excitability and synaptic transmission. We have studied the effect of hyperventilation on the phase-locked oscillatory components of the evoked responses in the human brain. We recorded visually evoked magnetoencephalographic responses before, during, and after voluntary hyperventilation to pattern-reversal checkerboard stimuli. Gamma-band (30-45 Hz) responses phase-locked to the stimuli were generated in the occipital visual cortex. A wavelet-based time-frequency analysis revealed that the gamma responses increased during HV whereas their frequency did not change significantly. A recent in vitro study in the rat hippocampus demonstrated that the stability of spontaneous gamma activity increases during hypocapnia as a result of enhanced GABAergic transmission. To test if a similar mechanism could account for our findings, we performed simulations on a network of 100 Hodgkin-Huxley neurons connected by inhibitory synapses. We found that enhanced GABA(A) transmission, paired with enhanced excitability, can explain the increase in evoked gamma activity without changing the frequency.

Original publication

DOI

10.1006/nimg.2001.1013

Type

Journal article

Journal

Neuroimage

Publication Date

03/2002

Volume

15

Pages

575 - 586

Keywords

Adult, Electroencephalography, Evoked Potentials, Visual, Female, Humans, Hyperventilation, Hypoxia, Brain, Interneurons, Male, Neural Inhibition, Occipital Lobe, Oscillometry, Pattern Recognition, Visual, Photic Stimulation, Receptors, GABA-A, Synaptic Transmission, Visual Cortex