Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Identifying the sources of oscillatory activity in the human brain is a challenging problem in current magnetoencephalography (MEG) and electroencephalography (EEG) research. The fluctuations in phase and amplitude of cortical oscillations preclude signal averaging over successive sections of the data without a priori assumptions. In addition, several sources at different locations often produce oscillatory activity at similar frequencies. For example, spontaneous oscillatory activity in the 8- to 13-Hz band is produced simultaneously at least in the posterior parts of the brain and bilaterally in the sensorimotor cortices. The previous approaches of identifying sources of oscillatory activity by dipole modeling of bandpass filtered data are quite laborious and require that multiple criteria are defined by an experienced user. In this work we introduce a convenient method for source localization using minimum current estimates in the frequency domain. Individual current estimates are calculated for the Fourier transforms of successive sections of continuous data. These current estimates are then averaged. The algorithm was tested on simulated and measured MEG data and compared with conventional dipole modeling. The main advantage of the proposed method is that it provides an efficient approach for simultaneous estimation of multiple sources of oscillatory activity in the same frequency band.

Original publication

DOI

10.1006/nimg.2001.1020

Type

Journal article

Journal

Neuroimage

Publication Date

03/2002

Volume

15

Pages

568 - 574

Keywords

Algorithms, Artifacts, Cerebral Cortex, Computer Simulation, Cortical Synchronization, Dominance, Cerebral, Fourier Analysis, Humans, Magnetoencephalography, Oscillometry, Signal Processing, Computer-Assisted, Somatosensory Cortex