Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Salient objects often capture our attention, serving as distractors and hindering our current goals. It remains unclear when and how salient distractors interact with our goals, and our knowledge on the neural mechanisms responsible for attentional capture is limited to a few brain regions recorded from non-human primates. Here we conducted a multivariate analysis on human intracranial signals covering most brain regions and successfully dissociated distractor-specific representations from target-arousal signals in the high-frequency (60-100 Hz) activity. We found that salient distractors were processed rapidly around 220 ms, while target-tuning attention was attenuated simultaneously, supporting initial capture by distractors. Notably, neuronal activity specific to the distractor representation was strongest in the superior and middle temporal gyrus, amygdala and anterior cingulate cortex, while there were smaller contributions from the parietal and frontal cortices. These results provide neural evidence for attentional capture by salient distractors engaging a much larger network than previously appreciated.

Original publication

DOI

10.1038/s41562-024-01852-5

Type

Journal article

Journal

Nat Hum Behav

Publication Date

05/2024

Volume

8

Pages

932 - 944

Keywords

Humans, Attention, Male, Adult, Female, Young Adult, Brain, Brain Mapping, Gyrus Cinguli, Amygdala, Visual Perception, Electroencephalography