Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this paper, we suggest that personalized LLMs trained on information written by or otherwise pertaining to an individual could serve as artificial moral advisors (AMAs) that account for the dynamic nature of personal morality. These LLM-based AMAs would harness users' past and present data to infer and make explicit their sometimes-shifting values and preferences, thereby fostering self-knowledge. Further, these systems may also assist in processes of self-creation, by helping users reflect on the kind of person they want to be and the actions and goals necessary for so becoming. The feasibility of LLMs providing such personalized moral insights remains uncertain pending further technical development. Nevertheless, we argue that this approach addresses limitations in existing AMA proposals reliant on either predetermined values or introspective self-knowledge.

Original publication

DOI

10.1007/s11948-024-00518-9

Type

Journal article

Journal

Sci Eng Ethics

Publication Date

21/11/2024

Volume

30

Keywords

Authenticity, Moral AI, Self-knowledge, Humans, Morals, Knowledge, Self Concept