Optimizing magnetometers arrays and analysis pipelines for multivariate pattern analysis.
Bezsudnova Y., Quinn AJ., Jensen O.
BACKGROUND: Multivariate pattern analysis (MVPA) has proven an excellent tool in cognitive neuroscience. It also holds a strong promise when applied to optically-pumped magnetometer-based magnetoencephalography. NEW METHOD: To optimize OPM-MEG systems for MVPA experiments this study examines data from a conventional MEG magnetometer array, focusing on appropriate noise reduction techniques for magnetometers. We determined the least required number of sensors needed for robust MVPA for image categorization experiments. RESULTS: We found that the use of signal space separation (SSS) without a proper regularization significantly lowered the classification accuracy considering a sub-array of 102 magnetometers or a sub-array of 204 gradiometers. We also found that classification accuracy did not improve when going beyond 30 sensors irrespective of whether SSS has been applied. COMPARISON WITH EXISTING METHODS: The power spectra of data filtered with SSS has a substantially higher noise floor that data cleaned with SSP or HFC. Consequently, MVPA decoding results obtained from the SSS-filtered data are significantly lower compared to all other methods employed. CONCLUSIONS: When designing MEG system based on SQUID magnetometers optimized for multivariate analysis for image categorization experiments, about 30 magnetometers are sufficient. We advise against applying SSS filters without a proper regularization to data from MEG and OPM systems prior to performing MVPA as this method, albeit reducing low-frequency external noise contributions, also introduces an increase in broadband noise. We recommend employing noise reduction techniques that either decrease or maintain the noise floor of the data like signal-space projection, homogeneous field correction and gradient noise reduction.