Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Acquisition and reversal of a spatial discrimination were assessed in an appetitive, elevated plus-maze task in 4 groups of mice: knockout mice lacking the AMPA receptor subunit GluR-A (GluR1), wild-type controls, mice with cytotoxic hippocampal lesions, and controls that had undergone sham surgery. In agreement with previous studies using tasks such as the water maze, GluR-A(-/-) mice were unimpaired during acquisition of the spatial discrimination task, whereas performance in the hippocampalgroup remained at chance levels. In contrast to their performance during acquisition, the GluR-A(-/-) mice displayed a mild deficit during reversal of the spatial discrimination and were profoundly impaired during discrete trial, rewarded-alternation testing on the elevated T maze. The latter result suggests a short-term, flexible spatial working memory impairment in GluR-A(-/-) mice, which might also underlie their mild deficit during spatial reversal.


Journal article


Behav Neurosci

Publication Date





866 - 870


Animals, Discrimination Learning, Female, Hippocampus, Male, Maze Learning, Memory, Memory Disorders, Mice, Mice, Knockout, Receptors, AMPA, Space Perception