Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We developed a behavioral task for spatial orienting of attention in which the same physical stimulus cued covert peripheral shifts of attention to either the left or the right visual fields in different conditions. The design enabled us to record the brain activity engaged during spatial shifts of covert attention that was independent from the physical characteristics of the cueing stimulus using event-related potentials (ERPs). ERPs elicited by foveal cues differed according to the predicted target location starting ca. 160 ms, and differences persisted until the occurrence of the target stimuli. Multiple processes were linked to shifting spatial attention during the cue-target interval. The earliest effects consisted of enhanced negative potentials over the posterior scalp contralateral to the cued location. Later effects were concentrated over the right anterior scalp sites, where activity associated with shifts to the right visual field elicited larger positive potentials. The results extend our understanding of the neural system that orients spatial attention by providing valuable information about the temporal dynamics and hemispheric asymmetries of activity within its posterior and anterior regions.

Original publication




Journal article



Publication Date





964 - 974


Adult, Attention, Behavior, Cues, Electroencephalography, Evoked Potentials, Female, Humans, Male, Orientation, Photic Stimulation, Psychomotor Performance, Space Perception, Visual Perception