Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent research in cognitive neuroscience has found that observation of human actions activates the 'mirror system' and provokes automatic imitation to a greater extent than observation of non-biological movements. The present study investigated whether this human bias depends primarily on phylogenetic or ontogenetic factors by examining the effects of sensorimotor experience on automatic imitation of non-biological robotic, stimuli. Automatic imitation of human and robotic action stimuli was assessed before and after training. During these test sessions, participants were required to execute a pre-specified response (e.g. to open their hand) while observing a human or robotic hand making a compatible (opening) or incompatible (closing) movement. During training, participants executed opening and closing hand actions while observing compatible (group CT) or incompatible movements (group IT) of a robotic hand. Compatible, but not incompatible, training increased automatic imitation of robotic stimuli (speed of responding on compatible trials, compared with incompatible trials) and abolished the human bias observed at pre-test. These findings suggest that the development of the mirror system depends on sensorimotor experience, and that, in our species, it is biased in favour of human action stimuli because these are more abundant than non-biological action stimuli in typical developmental environments.

Original publication




Journal article


Proc Biol Sci

Publication Date





2509 - 2514


Adult, Hand, Humans, Male, Movement, Psychomotor Performance, Robotics