Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Anatomical studies in non-human primates have shown that the cerebellum has prominent connections with the dorsal, but not the ventral, visual pathways of the cerebral cortex. Recently, it has been shown that the dorsolateral prefrontal cortex (DPFC) and cerebellum are interconnected in monkeys. This has been cited in support of the view that the cerebellum may be involved in cognitive functions, e.g. working memory. Six monkeys (Macaca fascicularis) were therefore trained on a classic test of working memory, the spatial delayed alternation (SDA) task, and also on a visual concurrent discrimination (VCD) task. Excitotoxic lesions were made in the lateral cerebellar nuclei, bilaterally, in three of the animals. When retested after surgery the lesioned animals were as quick to relearn both tasks as the remaining unoperated animals. However, when the response times (RT) for each task were directly compared, on the SDA task the monkeys with cerebellar lesions were relatively slow to decide where to respond. We argue that on the SDA task animals can prepare their responses between trials whereas this is not possible on the VCD task, and that the cerebellar lesions may disrupt this response preparation. We subsequently made bilateral lesions in the DPFC of the control animals and retested them on the SDA task. These monkeys failed to relearn the task. The results show that, unlike the dorsal prefrontal cortex, the cerebellum is not essential for working memory or the executive processes that are necessary for correct performance, though it may contribute to the preparation of responses.

Type

Journal article

Journal

Eur J Neurosci

Publication Date

11/1999

Volume

11

Pages

4070 - 4080

Keywords

Animals, Association Learning, Brain Mapping, Cerebellum, Cognition, Color Perception, Conditioning, Operant, Humans, Kainic Acid, Macaca fascicularis, Memory, Neurotoxins, Psychomotor Performance, Reward, Space Perception, Visual Pathways, Visual Perception