Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Despite the intuition that we can shift cognitive set on instruction, some behavioral studies have suggested that set shifting might only be accomplished once we engage in performance of the new task. It is possible that set switching consists of more than one component cognitive process and that the component processes might segregated in time. We recorded event-related potentials (ERPs) during two set-switching tasks to test whether different component processes were responsible for (i) set initiation and reconfiguration when presented with the instruction to switch, and (ii) the implementation of the new set once subjects engaged in performing the new task. The response switching (RS) task required shifts of intentional set; subjects selected between responses according to one of two conflicting intentional sets. The results demonstrated the existence of more than one constituent process. Some of the processes were linked to the initiation and reconfiguration of the set prior to actual performance of the new task. Other processes were time locked to performance of new task items. Set initiation started with modulation of medial frontal ERPs and was followed by modulation over parietal electrodes. Implementation of intentional set was associated with modulation of response-related ERPs.

Original publication

DOI

10.1162/089892902760807159

Type

Journal article

Journal

J Cogn Neurosci

Publication Date

15/11/2002

Volume

14

Pages

1139 - 1150

Keywords

Adult, Attention, Cognition, Evoked Potentials, Humans, Psychomotor Performance, Set, Psychology, Task Performance and Analysis