Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Hippocampal spatial view cells found in primates respond to a region of visual space being looked at, relatively independently of where the monkey is located. Rat place cells have responses which depend on where the rat is located. We investigate the hypothesis that in both types of animal, hippocampal cells respond to a combination of visual cues in the correct spatial relation to each other. In rats, which have a wide visual field, such a combination might define a place. In primates, including humans, which have a much smaller visual field and a fovea which is directed towards a part of the environment, the same mechanism might lead to spatial view cells. A computational model in which the neurons become organized by learning to respond to a combination of a small number of visual cues spread within an angle of a 30 degrees receptive field resulted in cells with visual properties like those of primate spatial view cells. The same model, but operating with a receptive field of 270 degrees, produced cells with visual properties like those of rat place cells. Thus a common hippocampal mechanism operating with different visual receptive field sizes could account for some of the visual properties of both place cells in rodents and spatial view cells in primates.

Original publication




Journal article



Publication Date





699 - 706


Animals, Hippocampus, Humans, Models, Neurological, Neurons, Primates, Rats, Space Perception, Visual Fields