Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A novel framework for analysing task-positive data in magnetoencephalography (MEG) is presented that can identify task-related networks. Techniques that combine beamforming, the Hilbert transform and temporal independent component analysis (ICA) have recently been applied to resting-state MEG data and have been shown to extract resting-state networks similar to those found in fMRI. Here we extend this approach in two ways. First, we systematically investigate optimisation of time-frequency windows for connectivity measurement. This is achieved by estimating the distribution of functional connectivity scores between nodes of known resting-state networks and contrasting it with a distribution of artefactual scores that are entirely due to spatial leakage caused by the inverse problem. We find that functional connectivity, both in the resting-state and during a cognitive task, is best estimated via correlations in the oscillatory envelope in the 8-20 Hz frequency range, temporally down-sampled with windows of 1-4s. Second, we combine ICA with the general linear model (GLM) to incorporate knowledge of task structure into our connectivity analysis. The combination of ICA with the GLM helps overcome problems of these techniques when used independently: namely, the interpretation and separation of interesting independent components from those that represent noise in ICA and the correction for multiple comparisons when applying the GLM. We demonstrate the approach on a 2-back working memory task and show that this novel analysis framework is able to elucidate the functional networks involved in the task beyond that which is achieved using the GLM alone. We find evidence of localised task-related activity in the area of the hippocampus, which is difficult to detect reliably using standard methods. Task-positive ICA, coupled with the GLM, has the potential to be a powerful tool in the analysis of MEG data.

Original publication

DOI

10.1016/j.neuroimage.2012.04.046

Type

Journal article

Journal

Neuroimage

Publication Date

01/08/2012

Volume

62

Pages

530 - 541

Keywords

Adult, Algorithms, Brain, Cognition, Computer Simulation, Data Interpretation, Statistical, Female, Humans, Magnetoencephalography, Male, Models, Neurological, Models, Statistical, Principal Component Analysis, Task Performance and Analysis