Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A significant challenge in developing spatial representations for the control of action is one of multisensory integration. Specifically, we require an ability to efficiently integrate sensory information arriving from multiple modalities pertaining to the relationships between the acting limbs and the nearby external world (i.e. peripersonal space), across changes in body posture and limb position. Evidence concerning the early development of such spatial representations points towards the independent emergence of two distinct mechanisms of multisensory integration. The earlier-developing mechanism achieves spatial correspondence by representing body parts in their typical or default locations, and the later-developing mechanism does so by dynamically remapping the representation of the position of the limbs with respect to external space in response to changes in postural information arriving from proprioception and vision.

Original publication




Journal article


Trends Cogn Sci

Publication Date





298 - 305


Child Development, Habituation, Psychophysiologic, Hand Strength, Humans, Infant, Posture, Recognition (Psychology), Saccades, Space Perception