Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract While early research efforts were devoted to the protection of systems against disruptive events, be they malevolent attacks, man-made accidents, or natural disasters, recent attention has been given to the resilience, or the ability of systems to "bounce back," of these events. Discussed here is a modeling paradigm for quantifying system resilience, primarily as a function of vulnerability (the adverse initial system impact of the disruption) and recoverability (the speed of system recovery). To account for uncertainty, stochastic measures of resilience are introduced, including Time to Total System Restoration, Time to Full System Service Resilience, and Time to α%-Resilience. These metrics are applied to quantify the resilience of inland waterway ports, important hubs in the flow of commodities, and the port resilience approach is deployed in a data-driven case study for the inland Port of Catoosa in Oklahoma. The contributions herein demonstrate a starting point in the development of a resilience decision making framework. © 2014 Elsevier Ltd. All rights reserved.

Original publication




Journal article


Computers and Industrial Engineering

Publication Date





183 - 194