Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Consistent with the dorsal stream hypothesis, difficulties processing dynamic information have previously been reported in individuals with autism spectrum conditions (ASC). However, no research has systematically compared motion processing abilities for slow and fast speeds. Here, we measured speed discrimination thresholds and motion coherence thresholds in slow (1.5 deg/sec) and fast (6 deg/sec) speed conditions in children with an ASC aged 7 to 14 years, and age- and ability-matched typically developing children. Unexpectedly, children with ASC were as sensitive as typically developing children to differences in speed at both slow and fast reference speeds. Yet, elevated motion coherence thresholds were found in children with ASC, but in the slow stimulus speed condition only. Rather than having pervasive difficulties in motion processing, as predicted by the dorsal stream hypothesis, these results suggest that children with ASC have a selective difficulty in extracting coherent motion information specifically at slow speeds. Understanding the effects of stimulus parameters such as stimulus speed will be important for resolving discrepancies between previous studies examining motion coherence thresholds in ASC and also for refining theoretical models of altered autistic perception.

Original publication




Journal article


Autism Res

Publication Date





531 - 541


autism, motion coherence, speed discrimination, visual motion processing, Adolescent, Child, Child Development Disorders, Pervasive, Differential Threshold, Discrimination (Psychology), Female, Humans, Male, Mental Processes, Motion Perception, Photic Stimulation