Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Theoretical models of visual neglect and extinction entail claims about the normal functioning of attention and parietal cortex in the healthy brain: (1) 'pseudoneglect', a commonly observed attentional bias towards left space, reflects the greater dominance of parietal cortex activity of the right versus left hemisphere; (2) the capacity to distribute attention bilaterally depends causally on the relative balance of parietal activity between the hemispheres; (3) disruption of the dominant right parietal cortex shifts this inter-hemispheric balance leftward, causing a rightward shift in attentional bias. We tested these claims using low-frequency offline transcranial magnetic stimulation (TMS) to transiently inhibit activity in the right angular gyrus/intra-parietal sulcus, followed by a visual detection task to assess changes in attentional bias, and functional magnetic resonance imaging (fMRI) to test for the predicted leftward shift in brain activity. The task required participants to covertly monitor both hemifields to detect and report the location of upcoming transient visual targets that appeared on the left, right or bilaterally. In the behavioural experiment, participants exhibited a leftward attentional bias ('pseudoneglect') at baseline, which was abolished by TMS. In the fMRI experiment, participants activated an expected network of visual, parietal and frontal cortex bilaterally during the period of covert bilateral attention. TMS shifted the relative hemispheric balance of parietal activity from right to left. The consistent direction of TMS-induced behavioural and functional change indicates a causal role for parietal inter-hemispheric balance in distributing visual attention across space.

Original publication




Journal article



Publication Date





63 - 73


Attention, Functional magnetic resonance imaging, Parietal cortex, Plasticity, Pseudoneglect, Transcranial magnetic stimulation, Visual extinction, Adult, Analysis of Variance, Attention, Brain Mapping, Extinction, Psychological, Female, Functional Laterality, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Oxygen, Parietal Lobe, Photic Stimulation, Space Perception, Transcranial Magnetic Stimulation, Young Adult