Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The importance of multisensory integration for perception and action has long been recognised. Integrating information from individual senses increases the chance of survival by reducing the variability in the incoming signals, thus allowing us to respond more rapidly. Reaction times (RTs) are fastest when the components of the multisensory signals are simultaneous. This response facilitation is traditionally attributed to multisensory integration. However, it is unclear if facilitation of RTs occurs when stimuli are perceived as synchronous or are actually physically synchronous. Repeated exposure to audiovisual asynchrony can change the delay at which multisensory stimuli are perceived as simultaneous, thus changing the delay at which the stimuli are integrated-perceptually. Here we set out to determine how such changes in multisensory integration for perception affect our ability to respond to multisensory events. If stimuli perceived as simultaneous were reacted to most rapidly, it would suggest a common system for multisensory integration for perception and action. If not, it would suggest separate systems. We measured RTs to auditory, visual, and audiovisual stimuli following exposure to audiovisual asynchrony. Exposure affected the variability of the unisensory RT distributions; in particular, the slowest RTs were either speed up or slowed down (in the direction predicted from shifts in perceived simultaneity). Additionally, the multisensory facilitation of RTs (beyond statistical summation) only occurred when audiovisual onsets were physically synchronous, rather than when they appeared simultaneous. We conclude that the perception of synchrony is therefore independent of multisensory integration and suggest a division between multisensory processes that are fast (automatic and unaffected by temporal adaptation) and those that are slow (perceptually driven and adaptable).

Original publication




Journal article


Exp Brain Res

Publication Date





763 - 775


Adaptation, Crossmodal, Ex-Gaussian, Miller’s inequality, Multisensory integration, Race model, Reaction time, Stimulus onset asynchrony, Time, Acoustic Stimulation, Adult, Auditory Perception, Female, Humans, Male, Models, Psychological, Photic Stimulation, Reaction Time, Visual Perception, Young Adult