Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The brain adapts to asynchronous audiovisual signals by reducing the subjective temporal lag between them. However, it is currently unclear which sensory signal (visual or auditory) shifts toward the other. According to the idea that the auditory system codes temporal information more precisely than the visual system, one should expect to find some temporal shift of vision toward audition (as in the temporal ventriloquism effect) as a result of adaptation to asynchronous audiovisual signals. Given that visual information gives a more exact estimate of the time of occurrence of distal events than auditory information (due to the fact that the time of arrival of visual information regarding an external event is always closer to the time at which this event occurred), the opposite result could also be expected. Here, we demonstrate that participants' speeded reaction times (RTs) to auditory (but, critically, not visual) stimuli are altered following adaptation to asynchronous audiovisual stimuli. After receiving "baseline" exposure to synchrony, participants were exposed either to auditory-lagging asynchrony (VA group) or to auditory-leading asynchrony (AV group). The results revealed that RTs to sounds became progressively faster (in the VA group) or slower (in the AV group) as participants' exposure to asynchrony increased, thus providing empirical evidence that speeded responses to sounds are influenced by exposure to audiovisual asynchrony.

Original publication




Journal article


Proc Natl Acad Sci U S A

Publication Date





9169 - 9173


Auditory Perception, Brain, Female, Humans, Male, Reaction Time, Visual Perception, Young Adult