Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Research has shown that people fail to report the presence of the auditory component of suprathreshold audiovisual targets significantly more often than they fail to detect the visual component in speeded response tasks. Here, we investigated whether this phenomenon, known as the "Colavita effect", also affects people's perception of visuotactile stimuli as well. In Experiments 1 and 2, participants made speeded detection/discrimination responses to unimodal visual, unimodal tactile, and bimodal (visual and tactile) stimuli. A significant Colavita visual dominance effect was observed (i.e., participants failed to respond to touch far more often than they failed to respond to vision on the bimodal trials). This dominance of vision over touch was significantly larger when the stimuli were presented from the same position than when they were presented from different positions (Experiment 3), and still occurred even when the subjective intensities of the visual and tactile stimuli had been matched (Experiment 4), thus ruling out a simple intensity-based account of the results. These results suggest that the Colavita visual dominance effect (over touch) may result from a competition between the neural representations of the two stimuli for access to consciousness and/or the recruitment of attentional resources.

Original publication

DOI

10.1007/s00221-008-1272-5

Type

Journal article

Journal

Exp Brain Res

Publication Date

04/2008

Volume

186

Pages

643 - 658

Keywords

Adult, Analysis of Variance, Discrimination (Psychology), Female, Humans, Male, Photic Stimulation, Reaction Time, Touch, Vision, Ocular, Visual Perception