Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The structure of egocentric networks reflects the way people balance their need for strong, emotionally intense relationships and a diversity of weaker ties. Egocentric network structure can be quantified with 'social signatures', which describe how people distribute their communication effort across the members (alters) of their personal networks. Social signatures based on call data have indicated that people mostly communicate with a few close alters; they also have persistent, distinct signatures. To examine if these results hold for other channels of communication, here we compare social signatures built from call and text message data, and develop a way of constructing mixed social signatures using both channels. We observe that all types of signatures display persistent individual differences that remain stable despite the turnover in individual alters. We also show that call, text, and mixed signatures resemble one another both at the population level and at the level of individuals. The consistency of social signatures across individuals for different channels of communication is surprising because the choice of channel appears to be alter-specific with no clear overall pattern, and ego networks constructed from calls and texts overlap only partially in terms of alters. These results demonstrate individuals vary in how they allocate their communication effort across their personal networks and this variation is persistent over time and across different channels of communication.

Original publication

DOI

10.1007/s41109-018-0065-4

Type

Journal article

Journal

Appl Netw Sci

Publication Date

2018

Volume

3

Keywords

Egocentric networks, Mobile phones, Social networks, Social signatures