Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

When combining information across different senses, humans need to flexibly select cues of a common origin while avoiding distraction from irrelevant inputs. The brain could solve this challenge using a hierarchical principle by deriving rapidly a fused sensory estimate for computational expediency and, later and if required, filtering out irrelevant signals based on the inferred sensory cause(s). Analyzing time- and source-resolved human magnetoencephalographic data, we unveil a systematic spatiotemporal cascade of the relevant computations, starting with early segregated unisensory representations, continuing with sensory fusion in parietal-temporal regions, and culminating as causal inference in the frontal lobe. Our results reconcile previous computational accounts of multisensory perception by showing that prefrontal cortex guides flexible integrative behavior based on candidate representations established in sensory and association cortices, thereby framing multisensory integration in the generalized context of adaptive behavior.

Original publication




Journal article



Publication Date





1076 - 1087.e8


MEG, causal inference, crossmodal, decision making, flexible behavior, magnetoencephalography, parietal cortex, representational similarity analysis, sensory fusion, structure inference, ventrolateral prefrontal cortex