Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Humans typically make near-optimal sensorimotor judgements but show systematic biases when making more cognitive judgements. Here we test the hypothesis that, while humans are sensitive to the noise present during early sensory encoding, the "optimality gap" arises because they are blind to noise introduced by later cognitive integration of variable or discordant pieces of information. In six psychophysical experiments, human observers judged the average orientation of an array of contrast gratings. We varied the stimulus contrast (encoding noise) and orientation variability (integration noise) of the array. Participants adapted near-optimally to changes in encoding noise, but, under increased integration noise, displayed a range of suboptimal behaviours: they ignored stimulus base rates, reported excessive confidence in their choices, and refrained from opting out of objectively difficult trials. These overconfident behaviours were captured by a Bayesian model blind to integration noise. Our study provides a computationally grounded explanation of human suboptimal cognitive inference.

Original publication

DOI

10.1038/s41467-019-09330-7

Type

Journal article

Journal

Nat Commun

Publication Date

12/04/2019

Volume

10

Keywords

Adult, Bayes Theorem, Choice Behavior, Cognition, Cognition Disorders, Computer Simulation, Decision Making, Female, Humans, Male, Noise, Orientation, Psychophysics, Regression Analysis, Reproducibility of Results, Young Adult